Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.

Identifieur interne : 002664 ( Main/Exploration ); précédent : 002663; suivant : 002665

The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.

Auteurs : Chad W. Saltikov [États-Unis] ; Ana Cifuentes ; Kasthuri Venkateswaran ; Dianne K. Newman

Source :

RBID : pubmed:12732551

Descripteurs français

English descriptors

Abstract

Arsenate [As(V); HAsO(4)(2-)] respiration by bacteria is poorly understood at the molecular level largely due to a paucity of genetically tractable organisms with this metabolic capability. We report here the isolation of a new As(V)-respiring strain (ANA-3) that is phylogenetically related to members of the genus Shewanella and that also provides a useful model system with which to explore the molecular basis of As(V) respiration. This gram-negative strain stoichiometrically couples the oxidation of lactate to acetate with the reduction of As(V) to arsenite [As(III); HAsO(2)]. The generation time and lactate molar growth yield (Y(lactate)) are 2.8 h and 10.0 g of cells mol of lactate(-1), respectively, when it is grown anaerobically on lactate and As(V). ANA-3 uses a wide variety of terminal electron acceptors, including oxygen, soluble ferric iron, oxides of iron and manganese, nitrate, fumarate, the humic acid functional analog 2,6-anthraquinone disulfonate, and thiosulfate. ANA-3 also reduces As(V) to As(III) in the presence of oxygen and resists high concentrations of As(III) (up to 10 mM) when grown under either aerobic or anaerobic conditions. ANA-3 possesses an ars operon (arsDABC) that allows it to resist high levels of As(III); this operon also confers resistance to the As-sensitive strains Shewanella oneidensis MR-1 and Escherichia coli AW3110. When the gene encoding the As(III) efflux pump, arsB, is inactivated in ANA-3 by a polar mutation that also eliminates the expression of arsC, which encodes an As(V) reductase, the resulting As(III)-sensitive strain still respires As(V); however, the generation time and the Y(lactate) value are two- and threefold lower, respectively, than those of the wild type. These results suggest that ArsB and ArsC may be useful for As(V)-respiring bacteria in environments where As concentrations are high, but that neither is required for respiration.

DOI: 10.1128/aem.69.5.2800-2809.2003
PubMed: 12732551
PubMed Central: PMC154534


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.</title>
<author>
<name sortKey="Saltikov, Chad W" sort="Saltikov, Chad W" uniqKey="Saltikov C" first="Chad W" last="Saltikov">Chad W. Saltikov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cifuentes, Ana" sort="Cifuentes, Ana" uniqKey="Cifuentes A" first="Ana" last="Cifuentes">Ana Cifuentes</name>
</author>
<author>
<name sortKey="Venkateswaran, Kasthuri" sort="Venkateswaran, Kasthuri" uniqKey="Venkateswaran K" first="Kasthuri" last="Venkateswaran">Kasthuri Venkateswaran</name>
</author>
<author>
<name sortKey="Newman, Dianne K" sort="Newman, Dianne K" uniqKey="Newman D" first="Dianne K" last="Newman">Dianne K. Newman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12732551</idno>
<idno type="pmid">12732551</idno>
<idno type="pmc">PMC154534</idno>
<idno type="doi">10.1128/aem.69.5.2800-2809.2003</idno>
<idno type="wicri:Area/Main/Corpus">002704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002704</idno>
<idno type="wicri:Area/Main/Curation">002704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002704</idno>
<idno type="wicri:Area/Main/Exploration">002704</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.</title>
<author>
<name sortKey="Saltikov, Chad W" sort="Saltikov, Chad W" uniqKey="Saltikov C" first="Chad W" last="Saltikov">Chad W. Saltikov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cifuentes, Ana" sort="Cifuentes, Ana" uniqKey="Cifuentes A" first="Ana" last="Cifuentes">Ana Cifuentes</name>
</author>
<author>
<name sortKey="Venkateswaran, Kasthuri" sort="Venkateswaran, Kasthuri" uniqKey="Venkateswaran K" first="Kasthuri" last="Venkateswaran">Kasthuri Venkateswaran</name>
</author>
<author>
<name sortKey="Newman, Dianne K" sort="Newman, Dianne K" uniqKey="Newman D" first="Dianne K" last="Newman">Dianne K. Newman</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenates (pharmacokinetics)</term>
<term>Arsenite Transporting ATPases (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Respiration (MeSH)</term>
<term>DNA, Bacterial (genetics)</term>
<term>DNA, Ribosomal (genetics)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Ion Pumps (genetics)</term>
<term>Ion Pumps (metabolism)</term>
<term>Multienzyme Complexes (genetics)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Mutagenesis (MeSH)</term>
<term>Operon (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Shewanella (classification)</term>
<term>Shewanella (genetics)</term>
<term>Shewanella (isolation & purification)</term>
<term>Shewanella (metabolism)</term>
<term>Water Microbiology (MeSH)</term>
<term>Water Pollutants, Chemical (pharmacokinetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>ADN ribosomique (génétique)</term>
<term>Arsenite Transporting ATPases (MeSH)</term>
<term>Arséniates (pharmacocinétique)</term>
<term>Complexes multienzymatiques (génétique)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Microbiologie de l'eau (MeSH)</term>
<term>Mutagenèse (MeSH)</term>
<term>Opéron (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polluants chimiques de l'eau (pharmacocinétique)</term>
<term>Pompes ioniques (génétique)</term>
<term>Pompes ioniques (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Shewanella (classification)</term>
<term>Shewanella (génétique)</term>
<term>Shewanella (isolement et purification)</term>
<term>Shewanella (métabolisme)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>DNA, Ribosomal</term>
<term>Ion Pumps</term>
<term>Multienzyme Complexes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ion Pumps</term>
<term>Multienzyme Complexes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Arsenates</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arsenite Transporting ATPases</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>ADN ribosomique</term>
<term>Complexes multienzymatiques</term>
<term>Pompes ioniques</term>
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>Pompes ioniques</term>
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Arséniates</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Respiration</term>
<term>Inactivation, Metabolic</term>
<term>Mutagenesis</term>
<term>Operon</term>
<term>Phylogeny</term>
<term>Water Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arsenite Transporting ATPases</term>
<term>Inactivation métabolique</term>
<term>Microbiologie de l'eau</term>
<term>Mutagenèse</term>
<term>Opéron</term>
<term>Phylogenèse</term>
<term>Respiration cellulaire</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arsenate [As(V); HAsO(4)(2-)] respiration by bacteria is poorly understood at the molecular level largely due to a paucity of genetically tractable organisms with this metabolic capability. We report here the isolation of a new As(V)-respiring strain (ANA-3) that is phylogenetically related to members of the genus Shewanella and that also provides a useful model system with which to explore the molecular basis of As(V) respiration. This gram-negative strain stoichiometrically couples the oxidation of lactate to acetate with the reduction of As(V) to arsenite [As(III); HAsO(2)]. The generation time and lactate molar growth yield (Y(lactate)) are 2.8 h and 10.0 g of cells mol of lactate(-1), respectively, when it is grown anaerobically on lactate and As(V). ANA-3 uses a wide variety of terminal electron acceptors, including oxygen, soluble ferric iron, oxides of iron and manganese, nitrate, fumarate, the humic acid functional analog 2,6-anthraquinone disulfonate, and thiosulfate. ANA-3 also reduces As(V) to As(III) in the presence of oxygen and resists high concentrations of As(III) (up to 10 mM) when grown under either aerobic or anaerobic conditions. ANA-3 possesses an ars operon (arsDABC) that allows it to resist high levels of As(III); this operon also confers resistance to the As-sensitive strains Shewanella oneidensis MR-1 and Escherichia coli AW3110. When the gene encoding the As(III) efflux pump, arsB, is inactivated in ANA-3 by a polar mutation that also eliminates the expression of arsC, which encodes an As(V) reductase, the resulting As(III)-sensitive strain still respires As(V); however, the generation time and the Y(lactate) value are two- and threefold lower, respectively, than those of the wild type. These results suggest that ArsB and ArsC may be useful for As(V)-respiring bacteria in environments where As concentrations are high, but that neither is required for respiration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12732551</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>69</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2003</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.</ArticleTitle>
<Pagination>
<MedlinePgn>2800-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Arsenate [As(V); HAsO(4)(2-)] respiration by bacteria is poorly understood at the molecular level largely due to a paucity of genetically tractable organisms with this metabolic capability. We report here the isolation of a new As(V)-respiring strain (ANA-3) that is phylogenetically related to members of the genus Shewanella and that also provides a useful model system with which to explore the molecular basis of As(V) respiration. This gram-negative strain stoichiometrically couples the oxidation of lactate to acetate with the reduction of As(V) to arsenite [As(III); HAsO(2)]. The generation time and lactate molar growth yield (Y(lactate)) are 2.8 h and 10.0 g of cells mol of lactate(-1), respectively, when it is grown anaerobically on lactate and As(V). ANA-3 uses a wide variety of terminal electron acceptors, including oxygen, soluble ferric iron, oxides of iron and manganese, nitrate, fumarate, the humic acid functional analog 2,6-anthraquinone disulfonate, and thiosulfate. ANA-3 also reduces As(V) to As(III) in the presence of oxygen and resists high concentrations of As(III) (up to 10 mM) when grown under either aerobic or anaerobic conditions. ANA-3 possesses an ars operon (arsDABC) that allows it to resist high levels of As(III); this operon also confers resistance to the As-sensitive strains Shewanella oneidensis MR-1 and Escherichia coli AW3110. When the gene encoding the As(III) efflux pump, arsB, is inactivated in ANA-3 by a polar mutation that also eliminates the expression of arsC, which encodes an As(V) reductase, the resulting As(III)-sensitive strain still respires As(V); however, the generation time and the Y(lactate) value are two- and threefold lower, respectively, than those of the wild type. These results suggest that ArsB and ArsC may be useful for As(V)-respiring bacteria in environments where As concentrations are high, but that neither is required for respiration.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saltikov</LastName>
<ForeName>Chad W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Department Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cifuentes</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Venkateswaran</LastName>
<ForeName>Kasthuri</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Newman</LastName>
<ForeName>Dianne K</ForeName>
<Initials>DK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016623">Ion Pumps</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.3.16</RegistryNumber>
<NameOfSubstance UI="D053501">Arsenite Transporting ATPases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N7CIZ75ZPN</RegistryNumber>
<NameOfSubstance UI="C025657">arsenic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053501" MajorTopicYN="N">Arsenite Transporting ATPases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016623" MajorTopicYN="N">Ion Pumps</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009876" MajorTopicYN="N">Operon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020592" MajorTopicYN="N">Shewanella</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014871" MajorTopicYN="N">Water Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NASA">
<Keyword MajorTopicYN="N">Non-programmatic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12732551</ArticleId>
<ArticleId IdType="pmc">PMC154534</ArticleId>
<ArticleId IdType="doi">10.1128/aem.69.5.2800-2809.2003</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Feb 9;280(5):1393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1997 Nov;168(5):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1999 May;7(5):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10354596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2000 Oct;23(3):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1974 May;27(5):985-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4598231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Jun;54(6):1472-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jun 3;240(4857):1319-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17815852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2000 Jan;173(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1982 Jan;149(1):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7033203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1990 Oct;40(4):331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2275851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Jun;66(2):250-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12040126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):2022-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1994 Jul;44(3):416-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7520733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(4):981-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7860609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Jan;179(2):538-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8990308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Dec;180(23):6292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9829939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 May;62(5):1664-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Oct;62(10):3762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Jul 1;41(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1999 Oct;23(5):615-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1998 Dec;171(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9871015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1997 Oct;47(4):1034-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9336902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Oct;61(10):3556-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Oct 15;70(1):191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2853689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pathol. 1975 Feb;28(2):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1127110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1998 Jan;48 Pt 1:179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9542087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Aug 1;255(3):647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9738904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 May 4;405(6782):94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1996 Oct;46(4):1153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8863450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Aug;60(8):3011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Dec;67(12):5568-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1997 Oct;47(4):1040-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9336903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jul;67(7):3180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11425739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Jan;68(1):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11772637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1998 Jul;48 Pt 3:965-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9734053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Nov;20(11):1118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2001 Nov 13;204(2):335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11731145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 May;66(5):1826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):311-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1999 Oct;49 Pt 4:1341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10555311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cifuentes, Ana" sort="Cifuentes, Ana" uniqKey="Cifuentes A" first="Ana" last="Cifuentes">Ana Cifuentes</name>
<name sortKey="Newman, Dianne K" sort="Newman, Dianne K" uniqKey="Newman D" first="Dianne K" last="Newman">Dianne K. Newman</name>
<name sortKey="Venkateswaran, Kasthuri" sort="Venkateswaran, Kasthuri" uniqKey="Venkateswaran K" first="Kasthuri" last="Venkateswaran">Kasthuri Venkateswaran</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Saltikov, Chad W" sort="Saltikov, Chad W" uniqKey="Saltikov C" first="Chad W" last="Saltikov">Chad W. Saltikov</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002664 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002664 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12732551
   |texte=   The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12732551" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020